

Cooperation, Power and Justice

Cooperative Game Theory Tutorial by Yoram Bachrach

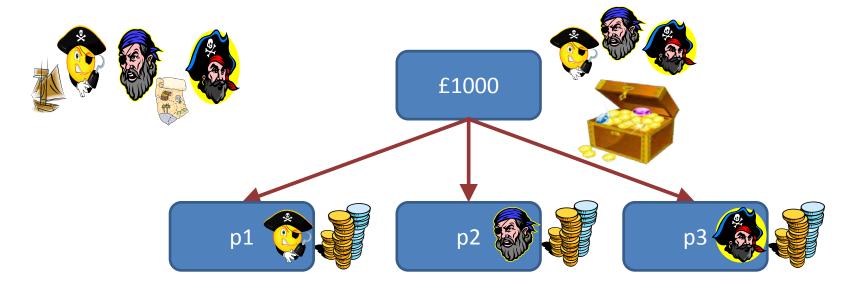
Presenter: Weiwei Cheng

Treasure Island

£200

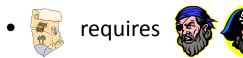
£1000

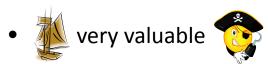
Treasure Island – Sharing Rewards



– Stable or Shaky?

— Is it Fair?

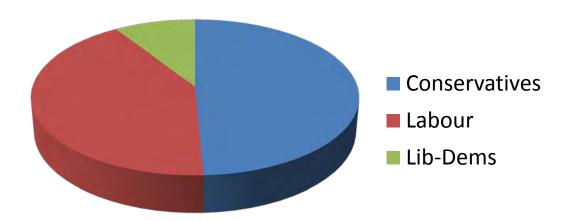




UK Elections 2010: Budgets and Politics

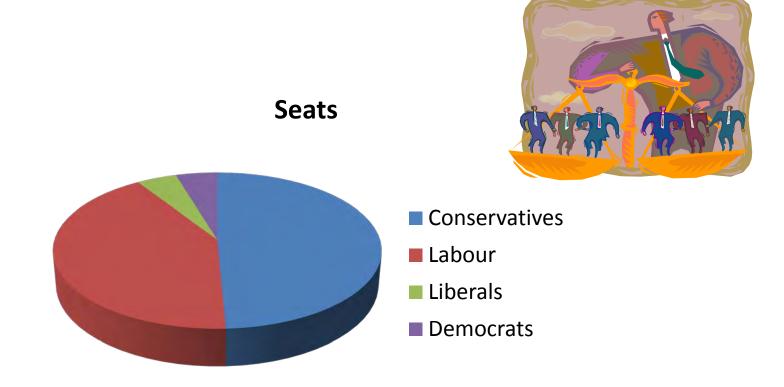
Conservatives	Labour	Lib-Dems
306	258	57

Seats



An Alternate Universe

Conservatives	Labour	Liberals	Democrats
306	258	28	29



Cooperative Games

Cooperation

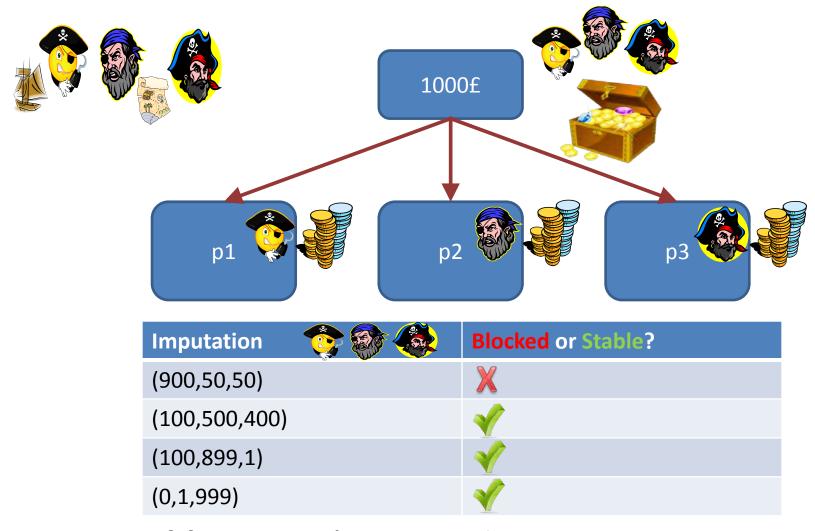
Competition

Cannot achieve goal alone Synergies Coordination Maximize share of rewards
Minimize cost
Increase influence

Treasure Island

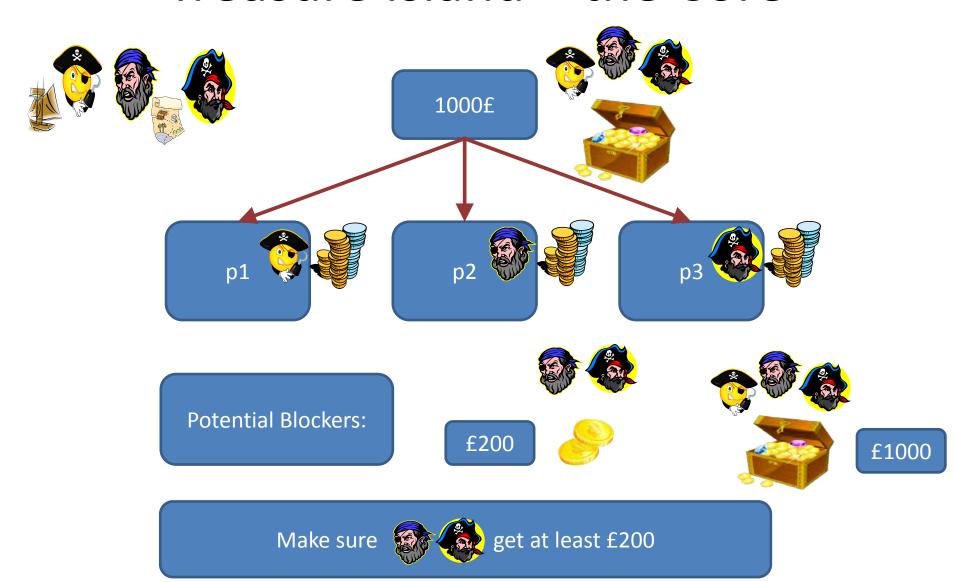
Coalition: C	Value: v(C)
Ø	$v(\emptyset) = 0$
	$v(\{1\})=0$
	$v(\{2\})=0$
	$v(\{3\}) = 0$
	$v(\{1,2\}) = 0$
	$v(\{1,3\}) = 0$
	$v(\{2,3\}) = 200$
	$v(\{1,2,3\}) = 1000$

Treasure Island – Imputations



– Stable is not always Fair!

Treasure Island – the Core



Agent properties

Dummy	Never contributes anything $\forall C, v(C \cup \{a_i\}) = v(C)$
Equivalent	Contribute equally everywhere $\forall C \neg (a_i \in C) \land \neg (a_j \in C) \Rightarrow v(C \cup \{a_i\}) = v(C \cup \{a_j\})$

Fairness Requirements

- Dummy axiom:
 - Dummies get nothing
- Symmetry axiom:
 - Equivalent agents get the same
- Additivity axiom:
 - Value decomposes over games
- Can we fulfill all of these?

Marginal Contribution I

Coalition	Value
	£0
	£1000

Marginal contribution of to

- £1000-£0=£1000

Marginal Contribution I

Coalition	Value
	£200
	£1000

Marginal contribution of to

-£1000-£200=£800

Permutation Contribution 4

	Before $v(S_{\pi}(i))$	Including $v(S_{\pi}(i) \cup \{i\})$	Contribution
S _T (I)	£0	£1000	£1000
	£0	£200	£200
Section 1	£0	£1000	£1000

The Shapley Value: Fairness

Average contribution across all permutations

$$sh_i(v) = \frac{1}{n!} \sum_{\pi \in \Pi} [v(s_{\pi}(i) \cup \{i\}) - v(s_{\pi}(i))]$$

Only fair solution!

Treasure Island – the Shapley Value

	0	0	1000
	0	1000	0
	0	0	1000
	800	0	200
	800	200	0
	0	1000	0
Average	266.66	366.66	366.66

Power in the UK Elections

Conservatives	Labour	Lib-Dems
306	258	57
66.66%	16.66%	16.66%

Conservatives	Labour	Liberals	Democrats
306	258	28	29
75%	8.33%	8.33%	8.33%

• Game 1: [306, 258, 57; 326]

• Game 2: [306, 258, 28, 29; 326]

- Split makes the Labour less powerful
 - But the power goes to the Conservatives...
 - ... not the Lib-Dems

The "Rip-off" Game

Applications

Conclusion

